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Parabolic Induction, Categories of
Representations and Operator Spaces

Tyrone Crisp and Nigel Higson

Abstract. We study some aspects of the functor of parabolic
induction within the context of reduced group C∗-algebras and
related operator algebras. We explain how Frobenius reciprocity
fits naturally within the context of operator modules, and examine
the prospects for an operator algebraic formulation of Bernstein’s
reciprocity theorem (his second adjoint theorem).

1. Introduction

Harish-Chandra famously decomposed the regular representation of
a real reductive group G into an explicit integral of its isotypical parts.
His program to do so had two parts:

(a) the classification of the so-called cuspidal representations of G, and
of the Levi subgroups of G; and

(b) the construction, by the process of parabolic induction, of further
representations, sufficiently many in number to decompose the reg-
ular representation.

The cuspidal representations of a real reductive group G are the ir-
reducible and unitary representations of G that are square-integrable,
modulo center. Their classification fits well with ideas from C∗-algebra
K-theory and noncommutative geometry. Indeed the classification was
an important source of inspiration for the formulation of the Baum-
Connes conjecture. But the functor of parabolic induction has received
less attention from operator algebras and noncommutative geometry.
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2 TYRONE CRISP AND NIGEL HIGSON

Our purpose here is to continue the effort begun in [Cla13] and in
[CCH14b, CCH14a] to address this imbalance, if only modestly.

A few years ago Pierre Clare explained in [Cla13] how parabolic
induction fits into the theory of Hilbert C∗-modules and bimodules
in a way that is very similar to Marc Rieffel’s well known treatment
of ordinary induction [Rie74]. In joint work with Clare [CCH14b,
CCH14a] we studied parabolic induction as a functor between cat-
egories of Hilbert C∗-modules. Using a considerable amount of rep-
resentation theory, due to Harish-Chandra, Langlands and others, we
constructed an adjoint Hilbert C∗-bimodule, used it to define a functor
of parabolic restriction between categories of Hilbert C∗-modules, and
proved that parabolic induction and restriction are two-sided “local”
adjoints of one another.

A drawback of our work was that the concept of local adjunction
is significantly weaker than the standard category-theoretic notion of
adjunction. This shortcoming was unavoidable: there is no category-
theoretic adjunction at the Hilbert C∗-module level. Moreover the
natural candidates for the unit maps of the sought-for adjunctions are
even not properly defined at the Hilbert C∗-module level.

The purpose of this article is to examine the extent to which the
shortcomings of the Hilbert C∗-module theory can be remedied by ad-
justing the context a little. To this end we shall study new categories
consisting of group or C∗-algebra representations on operator spaces.
We shall prove that the new categories have only the familiar irreducible
objects, so that they present a plausible context for representation the-
ory. Then we shall formulate and prove a simple theorem about adjoint
pairs of functors between the new categories of operator space modules
over C∗-algebras (as opposed to Hilbert C∗-modules). As we shall ex-
plain, this implies in a very simple way (that does not require any
sophisticated representation theory) a Frobenius reciprocity theorem
for parabolic induction (the theorem is that the functor of parabolic
induction has a left adjoint, which we shall describe explicitly, along
with the adjunction isomorphism).

Secondly, we shall examine in detail the form of parabolic induction
and restriction at the level of Harish-Chandra’s Schwartz algebra in the
particular case where G = SL(2,R). We shall summarize the tempered
representation theory of G in the form of a Morita equivalence between
the Harish-Chandra algebra and a simpler and more accessible algebra.
Our reason for doing this is to formulate and prove a “second adjoint
theorem” for tempered representations in this case, along the lines of
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Bernstein’s fundamental second adjoint theorem (that parabolic in-
duction also has an explicit right adjoint) in the smooth representation
theory of reductive p-adic groups [Ber92, Ber87].

We shall say a good deal more elsewhere about our second adjoint
theorem for tempered representations. Our reason for introducing the
result here is to use it as a test for measuring the potential usefulness
of new operator-algebraic contexts for representation theory. To this
end, we shall conclude by using the explicit formulas obtained for the
Harish-Chandra algebra to explore the prospects for an elaboration of
the operator space module Frobenius reciprocity relation analyzed in
Section 2 so as to include Bernstein’s second adjunction. We shall
give one concrete suggestion about how this might be achieved in Sec-
tion 4.3.

2. Categories of Operator Space Modules

We shall study operator space modules over C∗-algebras and, later
on, over operator algebras. For the most part we shall refer to the
monograph [BLM04] for background on operator spaces, but we shall
repeat some of the basic definitions here.

But before we start, let us explain our point of view. In the rep-
resentation theory of real reductive groups there is broad agreement
about the concepts of irreducible representation that are appropriate
for study, along with the associated concepts of equivalence among ir-
reducible representations. But representations that lie well beyond the
irreducible representations are little-studied in representation theory.
From the point of view of noncommutative geometry this is an awkward
omission, since for example the K-theory studied in noncommutative
geometry, and used to formulate the Baum-Connes conjecture, involves
representations that are far from irreducible. So it is of interest to ex-
plore some of the potentially convenient categories of representations
that operator algebra theory provides.

As we mentioned in the introduction, our immediate concern here
is not K-theory but parabolic induction, together with adjunction the-
orems such as Frobenius reciprocity. But here, too, the choice of a
category of representations matters. Our main observation is that op-
erator spaces can offer a very convenient starting point from which
to begin an examination of Frobenius reciprocity and related matters,
because the theorem assumes a particularly elementary form there.

To continue, recall that an operator space is a complex vector space
X equipped with a family of Banach space norms on the spaces Mn(X)
of n× n matrices over X that satisfy the following two conditions:
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(a) If x ∈Mn(X) and a, b ∈Mn(C), then

‖axb‖ ≤ ‖a‖‖x‖‖b‖.

(b) The norm of a block-diagonal matrix is the maximum of the norms
of the diagonal blocks.

A linear map T : X → Y between operator spaces induces maps

Mn(T ) : Mn(X) −→Mn(Y )

by applying T to each matrix entry, and we say that T is completely

bounded (c.b.) if
sup
n
‖Mn(T )‖operator <∞.

The supremum is the completely bounded norm. We shall also use the
related notions of completely contractive and completely isometric map.

Example 2.1. Every Hilbert space H carries a number of operator
space structures. In this paper we shall consider only the column Hilbert

space structure, in which H is identified with the concrete operator
space B(C, H) of bounded operators from C to H . Every bounded
operator between Hilbert spaces is completely bounded as an operator
between column Hilbert spaces, and the completely bounded norm is
the operator norm. See [BLM04, 1.2.23].

Let X , Y and Z be operator spaces. A bilinear map Φ: X×Y → Z
gives rise to bilinear maps

Mn(Φ) : Mn(X)×Mn(Y ) −→ Mn(Z)

through the formula

Mn(Φ) :
(
[xij ], [yij]

)
7−→

[∑n
k=1Φ(xik, ykj)

]
.

The Haagerup tensor product X ⊗h Y is a completion of the algebraic
tensor product over C and an operator space, characterized by the
property that every completely contractive Φ as above factors uniquely
through a completely contractive map X ⊗h Y → Z. See [BLM04,
1.5.4].

Definition 2.2. An operator algebra is an operator space A which
is also a Banach algebra with a bounded approximate unit, such that
the product in A induces a completely contractive map A⊗h A→ A.

Definition 2.3. A (left) operator module over an operator alge-
bra A is an operator space X and a nondegenerate1 left A-module
for which the module action extends to a completely contractive map

1Nondegenerate means that A ·X is dense in X .
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A ⊗h X → X . One similarly defines right operator modules, and op-
erator bimodules. We shall denote by OpModA the category of left
operator modules over A and completely bounded A-module maps.

2.1. Irreducible Operator Modules. If A is a C∗-algebra, then
the category OpModA contains the category HilbA of nondegenerate
Hilbert space representations of A as a full subcategory (each Hilbert
space being given its column operator space structure). Our first ob-
servation is that if A is of type I, then OpModA and HilbA have the
same irreducible objects (that is, the same modules having no nontriv-
ial closed submodules):

Proposition 2.4. Let A be a type I C∗-algebra. Every irreducible

operator A-module is completely isometrically isomorphic in OpModA
to an irreducible Hilbert space representation of A.

Proof. Let X be an irreducible operator A-module. By [BLM04,
Theorem 3.3.1] there is a nondegenerate representation of A on a
Hilbert space H , a second Hilbert space K, and a completely isometric
isomorphism from X to a closed A-submodule of the space B(K,H) of
bounded operators from K to H . We shall realize X as a subspace of
B(K,H) in this way, and we may assume that X ·K is dense in H .

We are going to argue that the representation of A on H is a mul-
tiple of a single irreducible representation of A. To begin, the repre-
sentation of A on H extends to the multiplier algebra M(A), and the
restriction to the center Z(M(A)) is a multiple of a single irreducible
representation of the center. For otherwise there would exist elements
z1, z2 ∈ Z(M(A)) with z1z2 = 0 yet

z1H 6= 0 and z2H 6= 0,

so that

z1X 6= 0 and z2X 6= 0.

The subspace

z1X ⊆ X

would then be a nontrivial submodule of the supposedly irreducible
module X .

Assume now that A is liminal (that is, A acts as compact operators
in each irreducible representation) and that furthermore the spectrum

Â is a Hausdorff topological space. The Dauns-Hofmann theorem (see
[DH68] or [Ped79, Section 4.4]) identifies Z(M(A)) with the algebra

of bounded, continuous, complex-valued functions on Â. The identifi-
cation is as follows:
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(a) If I ⊆ Z(M(A)) is the maximal ideal corresponding to evaluation

at [π] ∈ Â, then IA is the kernel of π.
(b) In contrast, if I ⊆ Z(M(A)) is the maximal ideal corresponding to

evaluation at a point at infinity, then IA = A.

In our present situation, we see that the action of Z(M(A)) on H must
factor through the quotient by a maximal ideal corresponding to a point
of Â, as in item (a), since the action of A on H is certainly nonzero.
Therefore the action of A must factor through a quotient A/IA. Since
the quotient is isomorphic to the compact operators, the action of A is
a multiple of a single irreducible representation, as required.

Next assume that A is a general liminal C∗-algebra. Let {Jα} be a
composition series for A for which each quotient Jα+1/Jα has Hausdorff
spectrum. Take the least α for which JαX 6= 0; by irreducibility we
must then have JαX = X . Consider X as an irreducible operator
module over B = Jα/Jα−1, where as usual Jα−1 denotes the closure
of the union of all ideals in the composition series smaller than Jα.
The argument above shows that H is a multiple of a single irreducible
representation of B, and hence is a multiple of a single irreducible
representation of A.

Finally, if A is a general type I C∗-algebra, we can apply the above
argument to a composition series for A with liminal quotients to show
that H is a multiple of a single irreducible representation of A in this
case too.

We have now shown in general that H is a multiple of a single
irreducible representation of A, say

H ∼= M ⊗ L

where A acts trivially on M and irreducibly on L. We shall now show
that there is a bounded operator S : K → M such that X consists
precisely of all operators in B(K,M ⊗ L) of the form

(2.5) k 7−→ S(k)⊗ ℓ,

as ℓ ranges over L. The map sending the operator (2.5) to ‖S‖ · ℓ will
then be a completely isometric A-linear isomorphism from X to L.

For each k ∈ K and m ∈ M consider the completely bounded,
A-linear map from X to L defined by

(2.6) X ∋ T 7−→ m∗ · T · k ∈ L,

where m∗ : M ⊗ L → L is the operator m′ ⊗ ℓ 7→ 〈m,m′〉ℓ. Fix k0
and m0 for which the operator (2.6) is nonzero. Then this operator
is invertible: its kernel is a proper closed submodule of the irreducible
module X , while its image is a nonzero A-invariant subspace of L,
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which must equal L by Kadison’s transitivity theorem [Kad57] (or by
a direct argument in the present rather elementary type I situation).

Applying Schur’s lemma to the irreducible representation L, we find
that there are scalars ck,m such that

m∗ · T · k = ck,m ·m
∗
0 · T · k0

for all k ∈ K and m ∈ M . Taking S ∈ B(K,M) to be the operator
defined by 〈m,S(k)〉 = ck,m, we have

T (k) = S(k)⊗ (m∗
0 · T · k0)

for all T ∈ X and all k ∈ K. �

Remark 2.7. We do not know if the assumption in the previous
proposition that A be of type I is actually necessary.

2.2. Functors Between Operator Module Categories. If X
is a right operator B-module, and if Y is a left operator B-module, then
we can of course form the algebraic tensor product of X and Y over
B. The balanced Haagerup tensor product X ⊗hB Y is a completion of
the algebraic tensor product and an operator space, characterized by
the fact that any completely contractive bilinear map

Φ: X × Y −→ Z

with Φ(xb, y) = Φ(x, by) extends to a completely contractive map from
X⊗hBY to Z. The Haagerup tensor product is associative, and functo-
rial with respect to c.b. bimodule maps. If X and Y carry left operator
A-module and right operator C-module structures, respectively, then
X ⊗hB Y is an operator A-C-bimodule. See [BLM04, Section 3.4].

Now let A and B be operator algebras, and let E be an operator
A-B-bimodule. We obtain a functor

OpModB −→ OpModA

from the Haagerup tensor product operation:

X 7−→ E ⊗hB X.

When needed, we shall give the functor the same name—E—as the
bimodule. Note that composition of functors corresponds, up to natural
isomorphism, to Haagerup tensor product of bimodules.

If X is an operator A-module, then the module structure induces a
completely isometric isomorphism

(2.8) A⊗hA X
∼=
−→ X.

Similarly, we obtain a completely isometric isomorphism

(2.9) X ⊗hB B
∼=
−→ X
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in the case of a right operator B-module structure. See [BLM04,
Lemma 3.4.6]. So tensoring with A or B, viewed as operator bimodules
over themselves, gives the identity functor up to natural isomorphism.

2.3. Adjunctions. Our aim is to study adjunction relations, in
the usual sense of category theory, between the functors introduced
above. So let A and B be operator algebras, and let E be an operator
A-B-bimodule. In addition, let F be an operator B-A-bimodule. Fol-
lowing standard terminology, we say that F is left adjoint to E, and
that E is right adjoint to F , if there is a natural isomorphism

(2.10) CBB(F ⊗hA X, Y )
∼=
−→ CBA(X,E ⊗hB Y ),

as X ranges over all operator A-modules and Y ranges over all operator
B-modules.

The bijection is required to be simply a bijection of sets, but in fact
it is automatically a uniformly (over X and Y ) completely bounded
natural isomorphism of operator spaces, as the following simple lem-
mas make clear (the lemmas simply place the unit/counit characteriza-
tion of adjoint functors within the operator module context: compare
[ML98, Chapter IV]).

Lemma 2.11. Associated to each natural isomorphism (2.10) there
is a completely bounded A-bimodule map

η : A −→ E ⊗hB F

(the unit of the adjunction) with the property that the composition

CBB(F ⊗hAX, Y )
(2.10)
−→ CBA(X,E⊗hB Y )

∼=
−→ CBA(A⊗hAX,E⊗hB Y )

sends a morphism T : F ⊗hA X → Y to the composition

A⊗hA X
η⊗id
−→ E ⊗hB F ⊗hA X

id⊗T
−→ E ⊗hB Y.

Proof. The definition of η is very simple (and standard). Take
X = A and Y = F in the isomorphism (2.10) to obtain

CBB(F ⊗hA A, F )
∼=
−→ CBA(A,E ⊗hB F ).

Then define η to be the image on the right hand side of the canonical
element F ⊗hA A → F on the left given by the module action. The
map η defined in this way is a priori just a left A-module map, but the
naturality of (2.10) implies it is a right A-module map too.
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The proof that the isomorphism (2.10) is given by the formula in
the lemma is a straightforward consequence of naturality of the isomor-
phism once again, together with the following claim: the isomorphism

CBB(F ⊗hA X,F ⊗hA X)
(2.10)
−→ CBA(X,E ⊗hB F ⊗hA X)

∼=
−→ CBA(A⊗hA X,E ⊗hB F ⊗hA X)

takes the identity operator on F ⊗hA X to η ⊗ idX . As for the claim,
denote by

S : X −→ E ⊗hB F ⊗hA X

the image of the identity operator on F ⊗hA X under (2.10). From the
commuting diagram

CBB(F ⊗hA X,F ⊗hA X)

��

// CBA(X,E ⊗hB F ⊗hA X)

��
CBB(F ⊗hA A, F ⊗hA X) // CBA(A,E ⊗hB F ⊗hA X)

CBB(F ⊗hA A, F ⊗hA A)

OO

// CBA(A,E ⊗hB F ⊗hA A)

OO

in which both squares are associated, by the naturality of (2.10), to a
c.b. A-module map from A into X , we see that S is equal to η ⊗ idX

on the image of any A→ X . But these images are dense in X , so the
claim is proved. �

Similarly:

Lemma 2.12. Associated to each natural isomorphism (2.10) there
is a completely bounded B-bimodule map

ε : F ⊗hA E −→ B

(the counit of the adjunction) with the property that the inverse of the

composition

CBA(X,E⊗hB Y )
(2.10)
←− CBB(F⊗hAX, Y )

∼=
←− CBB(F ⊗hAX,B⊗hBY )

sends a morphism S : X → E ⊗hB Y to the composition

F ⊗hA X
id⊗S
−→ F ⊗hA E ⊗hA Y

ε⊗id
−→ B ⊗hB Y. �

The unit and counit of an adjunction are linked by standard identi-
ties, and conversely any appropriate pair of linked bimodule maps gives
an adjunction:
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Lemma 2.13. Given an adjunction (2.10) and maps

η : A −→ E ⊗hB F and ε : F ⊗hA E −→ B

as in the previous lemmas, the two compositions

A⊗hA E
η⊗id
−−→ E ⊗hB F ⊗hA E

id⊗ε
−−→ E ⊗hB B −→ E

and

F ⊗hA A
id⊗η
−−→ F ⊗hA E ⊗hB F

ε⊗id
−−→ B ⊗hB F −→ F

are the the canonical isomorphisms induced from the left and right A-
and B-module actions on E and F , respectively. Conversely this data

determines an adjunction isomorphism. �

For the proof, compare for example [ML98, Chapter IV] once again.

Example 2.14. Let A be a closed subalgebra of B satisfying

AB = B = BA.

Let E = B, considered as an operator A-B-bimodule. The correspond-
ing tensor product functor

OpModB −→ OpModA

simply associates to an operator B-module its restriction to an oper-
ator A-module. Then define F = B, considered as an operator B-A-
bimodule. The associated tensor product functor X 7→ B ⊗A X is left
adjoint to E. The maps

η : A −→ E ⊗hB F and ε : F ⊗hA E −→ B

given by the formulas η(a1a2) = a1 ⊗ a2 and ε(b1 ⊗ b2) = b1b2 are the
unit and counit of an adjunction.

2.4. An Adjunction Theorem from Hilbert C*-Modules.
Hilbert C∗-modules provide a very simple set of instances of the ideas
from the previous section. To see this, we need to first recall some ele-
gant observations, due to Blecher [Ble97], that link operator spaces to
Hilbert C∗-modules. See also [BLM04, Chapter 8], as well as [Lan95]
for an introduction to Hilbert C∗-modules.

Let E be a right Hilbert C∗-module over a C∗-algebra B. The
matrix space Mn(E) is naturally a Hilbert C∗-module over Mn(B),
with inner product

〈
[eij ], [fij ]

〉
=

[∑
k〈eki, fkj〉

]
,

and in this way we give E the structure of an operator space and a
right operator B-module.
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A bounded, adjointable operator between Hilbert C∗-B-modules is
automatically completely bounded with the same norm (in fact this is
true for any bounded B-module map, whether or not it is adjointable).

We are especially interested in the situation where a Hilbert C∗-
B-module E is equipped with a left action of a second C∗-algebra
A by bounded and adjointable operators. One sometimes calls E a
C∗-correspondence from A to B, and every such correspondence is an
operator A-B-bimodule.

Now if E is any operator space, then its adjoint E∗ is the complex
conjugate vector space, equipped with the norms

∥∥[eij ]
∥∥
Mn(E∗)

=
∥∥[eji]

∥∥
Mn(E)

,

which endow E∗ with the structure of an operator space. See [BLM04,
Section 1.2.25]. If E is an operator A-B-bimodule, where A and B are
C∗-algebras, then E∗ is an operator B-A-bimodule via the formula

b · e∗ · a = (a∗ · e · b∗)∗.

Let us apply this construction to the situation in which E is a
Hilbert C∗-B-module, as follows. Denote by KB(E) the C∗-algebra
of B-compact operators on E, that is, the closed linear span of all
bounded adjointable operators on E of the form

e1 ⊗ e∗2 : e 7−→ e1〈e2, e〉.

The tensor product notation is particularly apt in view of the following
very elegant and useful calculation of Blecher.

Lemma 2.15. [BLM04, Corollary 8.2.15]. The above formula de-

fines a completely contractive map

κ : E ⊗hB E∗ −→ KB(E),

and this map is in fact a completely isometric isomorphism. �

The Haagerup tensor product also fits with Hilbert module theory
in a second way:2

Lemma 2.16. [CCH14b, Lemma 3.16]. If E is a C∗-A-B-corresp-

ondence, then the inner product induces a completely contractive map

E∗ ⊗hA E −→ B

of operator B-B-bimodules. �

2A third very elegant connection, which like the first is due to Blecher, will be
indicated in Lemma 3.5.
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The lemmas lead to the following simple, sufficient condition for a
C∗-correspondence E to admit a left adjoint when viewed as a functor

E : OpModB −→ OpModA .

Theorem 2.17. Let A and B be C∗-algebras, and let E be a C∗-

correspondence from A to B. If the action of A on E is through B-

compact operators, then the operator B-A-bimodule E∗ is left adjoint

to E.

Proof. The action of A on E gives rise to a ∗-homomorphism

α : A −→ KB(E),

and hence, by Lemma 2.15, to a c.b. A-A-bimodule map

η : A −→ E ⊗hB E∗.

On the other hand by Lemma 2.16 the inner product on E gives us a
c.b. B-bimodule map

ε : E∗ ⊗hA E −→ B.

We claim that these are the unit and counit, respectively of an adjunc-
tion. According to Lemma 2.13 to prove this it suffices to show that
the compositions

(2.18) A⊗hA E
η⊗id
−−→ E ⊗hB E∗ ⊗hA E

id⊗ε
−−→ E ⊗hB B −→ E

and

(2.19) E∗ ⊗hA A
id⊗η
−−→ E∗ ⊗hA E ⊗hB E∗ ε⊗id

−−→ B ⊗hB E∗ −→ E∗

are the the canonical isomorphisms induced from the left and right A-
and B-module actions on E and E∗, respectively.

The composition

E ⊗hB E∗ ⊗hA E
id⊗ε
−→ E ⊗hB B

∼=
−→ E

is given on elementary tensors by the formula

e1 ⊗ e∗2 ⊗ e3 7→ e1〈e2, e3〉 = κ(e1 ⊗ e∗2)e3,

where κ is the completely isometric isomorphism of Lemma 2.15. On
the other hand, the map

A⊗hA E
η⊗id
−→ E ⊗hB E∗ ⊗hA E

is given by the formula

a⊗ e ∈ E 7−→ κ−1(α(a))⊗ e.
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Combining these two computations, we find that the composition (2.18)
is

A⊗hA E ∋ a⊗ e 7−→ κ−1(α(a))⊗ e 7−→ α(a)e ∈ E,

as required. The second composition (2.19) is treated similarly. The
composition

E∗ ⊗hA E ⊗hB E∗ ε⊗id
−−→ B ⊗hB E∗ −→ E∗

is given by the formula

e∗1 ⊗ e2 ⊗ e∗3 7→ 〈e1, e2〉e
∗
3 = (e3〈e2, e1〉)

∗ = (κ(e2 ⊗ e∗3)
∗e1)

∗ ,

while the map

E∗ ⊗hA A
id⊗η
−−→ E∗ ⊗hA E ⊗hB E∗

is given by the formula

e∗ ⊗ a 7−→ e∗ ⊗ κ−1(α(a)).

So the composition (2.19) is

e∗ ⊗ a 7−→ e∗ ⊗ κ−1(α(a)) 7−→ (α(a)∗e)∗,

and the image is e∗α(a), as required. �

3. Operator Modules and Parabolic Induction

We turn now to representations of groups. Let G be a real reductive
group. For definiteness, let us assume, more precisely, that G is the
group of real points of a connected reductive group defined over R, as
we did in [CCH14b], although what we have to say would certainly
apply to a broader class of examples. On the other hand the special
linear and general linear groups will suffice to illustrate the results of
this paper.

We shall be interested in (continuous) unitary representations of G,
and usually, in particular, in representations that are weakly contained
in the regular representation, and so correspond to nondegenerate rep-
resentations of the reduced C∗-algebra of G.

Let P be a parabolic subgroup of G, with Levi decomposition

P = LN.

For example if G is a general linear, or special linear, group, then up to
conjugacy P is a subgroup of block-upper-triangular matrices, L is the
subgroup of block-diagonal matrices, and N is the subgroup of block-
upper-triangular matrices with identity diagonal blocks. See [Kna96,
Section VII.7] for the general definitions.
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The functor of (normalised) parabolic induction,

IndG
P : HilbC∗(L) −→ HilbC∗(G),

associates to a unitary representation π : L→ U(H) (or equivalently, a
nondegenerate representation of the full group C∗-algebra) the Hilbert
space completion of the space of continuous functions

{
f : G→ H : f(gℓn) = π(ℓ)−1δ(ℓ)−

1

2f(g)
}
,

where

δ(ℓ) = det
(
Adℓ : n→ n

)
,

in the inner product

〈f1, f2〉 =

∫

K

〈f1(k), f2(k)〉H dk,

where K is a maximal compact subgroup of G. The presence of the
normalizing factor δ−

1

2 ensures that the Hilbert space so obtained is
a unitary representation of G under the left translation action. If the
original representation is weakly contained in the regular representa-
tion, then so is the parabolically induced representation. For all this
see for example [Kna86, Chapter VII].

3.1. Parabolic Induction and Hilbert C*-Modules. Pierre
Clare began the study of parabolic induction from the point of view of
modules and bimodules over operator algebras in [Cla13].

Clare realized the functor of normalised parabolic induction as the
tensor product with an explicit C∗-correspondence C∗

r (G/N), from
C∗

r (G) to C∗
r (L), which is obtained as a completion of the space of

continuous, compactly supported functions on the homogeneous space
G/N in a natural (normalized, using δ) inner product valued in C∗

r (L).
Thus he exhibited a natural isomorphism

IndG
P H ∼= C∗

r (G/N)⊗C∗

r
(L) H

of functors from HilbC∗

r
(L) to HilbC∗

r
(G). See [Cla13, Section 3] or

[CCH14b, Section 4].

Remark 3.1. Actually Clare considered the full group C∗-algebra
in [Cla13]. Here we shall follow the approach in [CCH14b] and work
with the reduced C∗-algebra, and the associated reduced version of
Clare’s bimodule. The theorem that we shall present below holds in
either context, but for later purposes it is more appropriate for us to
work with the reduced C∗-algebra.
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The Hilbert module picture of parabolic induction as a tensor prod-
uct allows us to define parabolic induction of operator modules,

IndG
P : OpModC∗

r
(L) −→ OpModC∗

r
(G)

using the Haagerup tensor product:

IndG
P X = C∗

r (G/N)⊗hC∗

r
(L) X.

Remark 3.2. By a famous theorem of Harish-Chandra [HC53,
Theorem 6, p.230], every real reductive group is of type I; indeed it
is liminal. So Proposition 2.4, concerning irreducible objects in the
categories OpModC∗(G) and OpModC∗

r
(G) applies.

Within the context of operator modules it is natural and simple to
consider in addition to C∗

r (G/N) the adjoint operator space C∗
r (G/N)∗,

which is an operator C∗
r (L)-C

∗
r (G)-bimodule . We obtain from the

tensor product formula

ResGP X = C∗
r (G/N)∗ ⊗hC∗

r
(G) X

a functor
ResGP : OpModC∗

r
(G) −→ OpModC∗

r
(L),

that we shall call parabolic restriction.

Theorem 3.3. Parabolic restriction is left-adjoint to parabolic in-

duction, as functors on operator modules. Thus there is a natural iso-

morphism

CBC∗

r
(L)(Res

G
P X, Y ) ∼= CBC∗

r
(G)(X, IndG

P Y )

for all operator C∗
r (G)-modules X and all operator C∗

r (L)-modules Y .

Proof. In [CCH14b, Proposition 4.4] we showed that the action
of C∗

r (G) on the C∗-correspondence C∗
r (G/N) is by through compact

operators. The result is therefore an immediate consequence of Theo-
rem 2.17. �

Remark 3.4. The same argument shows that C∗(G) acts by com-
pact operators on C∗(G/N), and so there is an analogue of Theorem
3.3 for operator modules over the full group C∗-algebras.

3.2. Local Adjunction. Let us contrast the theorem proved in
the previous section with the situation for categories of Hilbert C∗-
modules.

In [CCH14b] we were able to show, using considerable input from
representation theory, that the operator bimodule C∗

r (G/N)∗ in fact
carries the structure of a C∗-correspondence. In other words its oper-
ator space structure is induced from a C∗

r (G)-valued inner product.
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It needs to be stressed that this circumstance depends in a delicate
way on issues in representation theory; in fact our explicit formula for
the inner product is derived from Harish-Chandra’s Plancherel formula.
There is for example no similar inner product within the context of full
group C∗-algebras.

In any case, we can use Kasparov’s interior tensor product opera-
tion [Lan95, Chapter 4] to define parabolic induction and restriction
functors

Ind: C*ModC∗

r
(L) −→ C*ModC∗

r
(G)

and

Res: C*ModC∗

r
(G) −→ C*ModC∗

r
(L)

between categories of (right) Hilbert C∗-modules and adjointable op-
erators between Hilbert C∗-modules.

Kasparov’s interior tensor product is related to the Haagerup tensor
product in a very simple way:

Lemma 3.5. [Ble97, Theorem 4.3]. Let E be a C∗-A-B-correspon-

dence and let F be a C∗-B-C-correspondence. The natural completely

bounded map

E ⊗hB F −→ E ⊗B F

from the Haagerup tensor product to the Kasparov tensor product is a

completely isometric isomorphism. �

See also [BLM04, Theorem 8.2.11]. But despite the lemma, and
despite the theorem proved in the previous section, it is not true that
the two functors above are adjoint to one another. Instead, the best
result available is that there are natural isomorphisms

(3.6) KC∗

r
(L)(ResX, Y ) ∼= KC∗

r
(G)(X, IndY )

between the spaces of compact adjointable operators. See [CCH14a,
Theorem 5.1].

In contrast to all this, our operator module result, Theorem 3.3, is
stronger and relies only on the fact that C∗

r (G) acts through compact
operators on C∗

r (G/N). This is in turn an easy consequence of the
geometry of G, involving no representation theory; the essential point
is that the homogeneous space G/P is compact.

3.3. SL(2,R). In order to explore the issues of the previous section
a bit further, let us consider the special case of the group SL(2,R).

The general structure of the reduced C∗-algebra of a real reductive
group is summarized in [CCH14b, Theorem 6.8]. We won’t repeat the
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general story here, but instead we shall focus on SL(2,R) alone. This
example are also treated in [CCH14b, Example 6.10].3

Up to conjugacy there is a unique nontrivial parabolic subgroup in
G = SL(2,R), namely the group P of upper triangular matrices, with
Levi factor L the diagonal matrices in SL(2,R). The (necessarily one-
dimensional) irreducible unitary representations of L divide into two
classes—the even representations where

[
−1 0
0 −1

]
acts as 1, and the odd

representations where it acts as −1. There is accordingly a direct sum
decomposition

C∗
r (L)

∼= C∗
r (L)even ⊕ C∗

r (L)odd

in which the even representations factor through the projection onto
the even summand, and the odd representations factor through the
projection onto the odd summand. Both summands are isomorphic to
C0(R) as C

∗-algebras.
Parabolically inducing the even and odd unitary representations of

L, we obtain the even and odd principal series representations of G.
Apart from these, among the irreducible unitary representations of G
that are weakly contained in the regular representation there are also
the discrete series representations. Associated to this division of the
representations of C∗

r (G) into three types there is a three-fold direct
sum decomposition

C∗
r (G) ∼= C∗

r (G)discrete ⊕ C∗
r (G)even ⊕ C∗

r (G)odd.

Finally, there is a compatible direct sum decomposition

C∗
r (G/N) ∼= C∗

r (G/N)even ⊕ C∗
r (G/N)odd

under which the reduced C∗-algebras of both G and L act on the even
and odd parts through the projections onto their respective even and
odd summands.

In what follows we shall concentrate on the even summands. The
odd summands are similar, but a bit harder to describe in the case of
C∗

r (G). However the situation as regards adjunctions is actually simpler
and less interesting for the odd summands, and this is the reason that
we shall concentrate on the even parts. The discrete part of C∗

r (G)
plays no role at all, since it acts trivially on C∗

r (G/N).
There is a C∗-algebra isomorphism

C∗
r (G)even ∼= C0

(
R,K(H)

)Z/2Z

3There is a long prior history of results on this topic (the reference [CCH14b] is
certainly not a primary source) and we won’t repeat that either, except to mention
[BM76, Section 4], where the reader can find a prior set of full details for the
SL(2,R) calculation.
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where H is a separable infinite-dimensional Hilbert space, and the two-
element group Z/2Z acts on R by multiplication by −1, while it acts
on K(H) trivially.

There is an isomorphism of Hilbert modules

C∗
r (G/N)even ∼= C0(R, H)

under which

(a) The left action of C∗
r (G)even becomes the obvious pointwise action

under the isomorphisms given above.
(b) The right action of C∗

r (L)even is by pointwise multiplication under
the identification of C∗

r (L)even with C0(R), and the inner product
is the pointwise inner product.

(c) The C∗
r (G)-valued inner product on C∗

r (G/N)∗even takes values in
the ideal C∗

r (G)even, and is given by

〈f1, f2〉C∗

r
(G) =

1
2
f1 ⊗ f ∗

2 + 1
2
w(f1)⊗ w(f2)

∗,

where f1, f2 ∈ C0(R, H), where

w(f)(x) = f(−x),

and where the tensors on the right hand side are to be viewed as
rank one adjointable operators on C0(R, H).

From all of this, and keeping in mind the obvious Morita equivalence

C0

(
R,K(H)

)Z/2Z
∼

Morita
C0(R)

Z/2Z,

we find that the problem of formulating an adjunction theorem for the
C∗-correspondence C∗

r (G/N) comes down to the same for the data

A = C0(R)
Z/2Z, B = C0(R), E = C0(R),

with E being regarded as a C∗-A-B-correspondence in the obvious
way.

Frobenius reciprocity in the operator-module setting (Theorem 3.3)
reduces here to simple case considered in Example 2.14: the unit

η : A −→ E ⊗hB E∗

is the inclusion (the tensor product is canonically isomorphic to B via
the product), while the counit

ε : E∗ ⊗hA E −→ B

is the product.
In contrast, the local adjunction isomorphism (3.6) in the Hilbert

C∗-module setting is equivalent to the assertion that the conjugate
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operator space structure on E∗ coincides with one induced by an A-
valued inner product, namely the inner product

〈f1, f2〉A = 1
2
f ∗
1 f2 +

1
2
w(f ∗

1f2).

The failure of the local adjunction isomorphism to extend to an isomor-
phism on all adjointable operators is a consequence of the fact that the
counit ε defined above is a completely bounded map of B-bimodules,
but not an adjointable map of Hilbert modules when the Haagerup ten-
sor product is identified with Kasparov’s internal tensor product using
Lemma 3.5.

4. The Second Adjoint Theorem

For smooth representations of reductive p-adic groups, Bernstein
made the remarkable discovery that parabolic induction has not only a
left adjoint, but also a right adjoint too, which is also given by parabolic
restriction, but with respect to the opposite parabolic subgroup (the
transpose). See [Ber87], or, for an exposition, [Ren10, Chapter VI].

Bernstein’s second adjoint theorem plays an important foundational
role in the representation theory of p-adic groups, leading to a direct
product decomposition of the category of smooth representations into
component categories. See for example [Ren10, Chapter VI] again.
Similar structure can be seen in the tempered representation theory of
both real and p-adic reductive groups, and one of the main motivations
for the work presented in [CCH14a, CCH14b] was to obtain some-
thing similar to Bernstein’s theorem in categories of representations
related to the reduced group C∗-algebra.

The local adjunction isomorphism of [CCH14a] that we described
in Section 3.2 is a partial solution. But it is not altogether satisfactory,
since in the p-adic context Bernstein’s theorem is a geometric foun-
dation from which representation theory may be built up,4 whereas
our local adjunction theorem required an extensive acquaintance with
tempered representation theory to formulate and prove.

So the question remains whether or not a suitable counterpart of
Bernstein’s second adjoint theorem can be developed in an operator-
algebraic context. We shall investigate this issue in detail elsewhere;
our purpose here is to present two computations in the simple case of
the group SL(2,R) that together indicate a possibly interesting role
here for operator algebras and operator modules.

4In this context see the recent article [BK13] for a beuatiful, geometric ap-
proach to Bernstein’s original theorem.
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4.1. Harish-Chandra’s Schwartz space. If G is a real reduc-
tive group, as before, then its Harish-Chandra algebra is a Fréchet
convolution algebra HC(G) of smooth, complex valued functions on G
that is perhaps easiest to present here as a distinguished subalgebra of
C∗

r (G) that is closed under the holomorphic functional calculus.
The definition of HC(G) is a bit involved. Moreover it is not by any

means obvious, even after one has mastered the definitions, thatHC(G)
is closed under convolution multiplication (see for example [Wal88,
Section 7.1] for the details). We shall avoid these difficulties here by us-
ing a Fourier-dual description of HC(G) that will suffice for our present
limited purposes; see the next section.

In any case, we shall study the following module category. In the
context of Fréchet spaces, in this section and the next, the symbol ⊗
will denote the completed projective tensor product of Fréchet spaces.

Definition 4.1. Let A be a Fréchet algebra (that is, a Fréchet
space equipped with a (jointly) continuous and associative multiplica-
tion operation). A smooth Fréchet module over A is a Fréchet space
V which is equipped with a continuous A-module structure, such that
the evaluation map

A⊗A V → V a⊗ v 7→ av

is an isomorphism.

Remark 4.2. The tensor product A⊗AV used in the above defini-
tion is the quotient of the completed projective tensor product A⊗ V
by the closed subsapce generated by the balancing relators

a1a2 ⊗ v − a1 ⊗ a2v

with a1, a2 ∈ A and v ∈ V .

Definition 4.3. We denote by SFModA the category of smooth
Fréchet modules over A, with continuous A-linear maps as morphisms.

If E is a smooth A-B-Fréchet bimodule, then the tensor product
construction in Remark 4.2 gives us a tensor product functor

E : SFModB −→ SFModA .

We shall study parabolic induction from the perspective of such func-
tors in the next section. We should remark that if A is a Frechet
algebra, then it is not necessarily true that the mutliplication map

A⊗A A −→ A

is an isomorphism, but this is true for the Harish-Chandra algebras
that we shall be studying.
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4.2. The Harish-Chandra algebra of SL(2,R). We shall now
specialize to G = SL(2,R) and is parabolic subgroup P = LN of upper
triangular matrices.

The Harish-Chandra algebra for L admits a decomposition

HC(L) = HC(L)even ⊕HC(L)odd,

that is compatible with the decomposition of the reduced group C∗-
algebra. Both the even and odd summands are isomorphic as Fréchet
algebras to the space S(R) of Schwartz functions on the line, with
pointwise multiplication.

Similarly there is a decomposition

HC(G) = HC(G)discrete ⊕HC(G)even ⊕HC(G)odd

that is compatible with the decomposition of the reduced C∗-algebra
in Section 3.3.

Once again we shall concentrate on the even parts. There is an
isomorphism

HC(G)even ∼= S (R,K(H))Z/2Z

in which the algebra appearing on the right is as follows.

(a) The Hilbert space H has a preferred orthonormal basis indexed by
even integers (the Hilbert space carries an SO(2) representation,
and the basis vectors are weight vectors).

(b) The right-hand algebra consists of continuous functions f from R

into the compact operators on H , invariant under the same Z/2Z
action as before.

(c) If p is any continuous seminorm on the space of Schwartz functions
on the line, and if fij denotes the ij-matrix entry of f with respect
to the given orthonormal basis of H , then p(fij) is of rapid decay
in i and j.

Compare [Art75] and [Var89, Chapter 8].
Finally there is the bimodule HC(G/N), which consists of suitable

rapid decay functions on G/N , as in [Wal92, Section 15.3]. There is a
decomposition

HC(G/N) = HC(G/N)even ⊕HC(G/N)odd

as before, and there is an isomorphism

HC(G/N)even ∼= S(R, H),

where on the right hand side are the functions f : R→ H whose com-
ponent functions fj are of rapid decay with respect to any Schwartz
space seminorm, as in (c) above.
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Since there is again a Morita equivalence

S (R,K(H))Z/2Z ∼
Morita

S(R)Z/2Z

(that is, an equivalence of SFMod categories) we are finally reduced to
studying adjunction theorems in the following Fréchet context:

A = S(R)Z/2Z, B = S(R), E = S(R),

with E being assigned the structure of a smooth A-B-bimodule in the
obvious way.

So far this is of course an uninteresting reworking of the computa-
tions that we made in Section 3.3. And the situation with regard to
Frobenius reciprocity is similarly predictable: if we define

F = S(R),

with its obvious B-A-bimodule structure, then, exactly as before:

Theorem 4.4. The bimodule maps

η : A −→ E ⊗B F and ε : F ⊗A E −→ B

defined by

η(a1a2) = a1 ⊗ a2 and ε(f ⊗ e) = fe

are the unit and counit of an adjunction. �

But the situation with regard to “Bernstein reciprocity,” or the
assertion that E also has a right adjoint, is much more interesting.
Surprisingly, in view of the fact that in most respects the Fréchet al-
gebra HC(G) behaves much like C∗

r (G), there is a striking difference
between the two regarding the second adjoint theorem, which in fact
does hold in the Harish-Chandra context.

We wish to define a candidate unit map

B −→ F ⊗A E

as follows:

(4.5) b1b2 7→ b1x⊗ b2 + b1 ⊗ xb2

for b1, b2 ∈ B (we are writing x for the function x 7→ x). It is not
immediately obvious that the formula is well-defined. But the following
calculation shows that this is so:

Lemma 4.6. The quantity in F ⊗A E described in (4.5) depends

only on the product b1b2 ∈ B, and the formula defines a continuous

B-bimodule homomorphism.
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Proof. Let us first show that if b ∈ B, then

b1bx⊗ b2 + b1b⊗ xb2 = b1x⊗ bb2 + b1 ⊗ xbb2.

We can write

b = a1 + a2x,

where a1, a2 ∈ A, and it suffices to consider separately the cases where
a1 = 0 and a2 = 0. The latter is easy, since the tensor products are
over A. As for the former, we calculate that

b1(a2x)x⊗ b2 + b1(a2x)⊗ xb2 = b1 ⊗ a2x
2b2 + b1x⊗ a2xb2

= b1x⊗ a2xb2 + b1 ⊗ xa2xb2,

as required (we used the fact that x2a2 ∈ A). So the formula defines a
continuous map

B ⊗B B −→ F ⊗A E ,

and the lemma follows from the easily verified fact that the multipli-
cation map

B ⊗B B −→ B

is an isomorphism. �

Remark 4.7. Bernstein constructed the unit map for his second
adjunction using the geometry of the homogeneous space G/N , and in
particular the fact that if P = LN is the opposite parabolic subgroup,
then the product map

N × L×N −→ G

embeds the left hand side as an open subset of G. See for exam-
ple [Ber92, Section 3.1]. It is not immediately apparent, but the
unit described here is essentially the same, and differs only in that
we have used the function x 7→ x in place of (the reciprocal of) Harish-
Chandra’s c-function from the theory of spherical functions. The c-
function arises when one calculates Bernstein’s unit map from the spec-
tral, or Fourier dual, perspective.

We can now prove a counterpart of Bernstein’s second adjoint the-
orem:

Theorem 4.8. The bimodule map given by the formula (4.5) is the
unit map for an adjunction

HomB(Y,F ⊗B X) ∼= HomA(E ⊗B Y,X).
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Proof. In order to prove the theorem we need to find a suitable
counit map

E ⊗B F → A.

We shall use the formula

(4.9) e⊗ f 7→
1

x
(ef)−

in which the superscript “−” on the right means that we take the odd

part of the function ef ∈ B (a superscript “+” will likewise denote the
even part of a function).

The composition

E ⊗B B −→ E ⊗B F ⊗A E −→ A⊗A E −→ E

is given by the formula

e⊗ b1b2 7→ e⊗ b1x⊗ b2 + e⊗ b1 ⊗ xb2

7→
1

x
(eb1x)

− ⊗ b2 +
1

x
(eb1)

− ⊗ xb2

7→
1

x
(eb1x)

−b2 +
1

x
(eb1)

−xb2

= (eb1)
+b2 + (eb1)

−b2

= eb1b2,

and this is the standard multiplication map, as required. In addition
the composition

B ⊗B F −→ F ⊗A E ⊗B F −→ F ⊗A A −→ F

is given by the formula

b1b2 ⊗ f 7→ b1x⊗ b2 ⊗ f + b1 ⊗ xb2 ⊗ f

7→ b1x⊗
1

x
(b2f)

− + b1 ⊗
1

x
(fb2x)

−

7→ b1(b2f)
− + b1

1

x
(fb2x)

−

= b1(b2f)
− + b1(b2f)

+,

which gives us the standard module multiplication map once again, as
required. �

Remark 4.10. In the present context of Harish-Chandra spaces,
the bimodules HC(G/N) and HC(G/N) are in fact isomorphic to one
another, so it is not possible to detect the use of the opposite parabolic
subgroup, except indirectly through the geometric role it plays in giving
the formula for the unit map, as indicated in Remark 4.7.
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4.3. Bernstein’s Theorem and Operator Spaces. In this fi-
nal section we shall adapt the Schwartz algebra computations of the
previous section to the context of operator algebras.

The formula (4.9) for the Bernstein counit does not make sense
for arbitrary continuous functions, and so does not make sense at the
level of (reduced) group C∗-algebras. We will show however that the
Bernstein reciprocity theorem of the previous section can be recovered
after replacing C∗-algebras with non-self-adjoint operator algebras.

Given f ∈ C0(R), we shall continue to use the notation

f = f+ + f−

for the decomposition of f into its even and odd parts. We shall also
denote by

w : C0(R) −→ C0(R)

the involution given by the formula

w(f)(x) = f(−x).

Let us now fix a smooth function c on the line (with a singularity at
0 ∈ R) with the following properties:

(a) c is odd,
(b) c(x) = 1/x for x near 0 ∈ R, and
(c) c(x) = 1 for large positive x.

The notation is supposed to call to mind Harish-Chandra’s c-function,
which is the ultimate source of the function c(x) = 1/x that appears
in the previous section; see Remark 4.7. We are simplifying matters
somewhat here by insisting that 1/c is a smooth function, bounded at
infinity (in the natural construction of the unit map, involving the ac-
tual c-function from representation theory, the boundedness condition
does not hold). But this is a relatively minor issue; see Remark 4.17
below.

Definition 4.11. We shall denote by B ⊆ C0(R) the space of those
functions f ∈ C0(R) for which the product c·f− extends to a continuous
(and necessarily even) function on R. Equivalently B consists of those
functions in C0(R) whose odd part is differentiable at 0 ∈ R.

Lemma 4.12. The formula

δ(b) = c · b−

defines a w-twisted derivation from B into C0(R), so that

δ(b1b2) = δ(b1)b2 + w(b1)δ(b2).
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for all b1, b2 ∈ B. As a result the formula

(4.13) b 7−→

[
b 0

δ(b) w(b)

]

defines an algebra embedding of B into the algebra 2× 2 matrices over

C0(R). �

Lemma 4.14. The image of B in M2(C0(R)) under the embedding

(4.13) is a norm-closed subalgebra. �

We shall equip the algebra B with the operator algebra structure
it receives from the embedding (4.13). In addition, let A be the C∗-
algebra of even functions in C0(R). It embeds completely isometrically
into B, and

AB = B = BA

(indeed the closures are superfluous).
Let E = B, considered as an operator A-B-bimodule, and let F =

B considered as an operator B-A-bimodule. Frobenius reciprocity, or
the assertion that the tensor product functor

F : OpModA −→ OpModB

is left-adjoint to the tensor product functor

E : OpModB −→ OpModA

holds as in Example 2.14. But in addition these modules satisfy the
following version of Bernstein reciprocity:

Theorem 4.15. The tensor product functor E is left-adjoint to the

tensor product functor F : there is a natural isomorphism

CBB(Y, F ⊗hA X) ∼= CBA(E ⊗hB Y,X).

Proof. We want to define a unit map

η : B −→ F ⊗hA E

by the formula

(4.16) b1b2 7−→
b1
c
⊗ b2 + b1 ⊗

b2
c
.

The formula gives a well-defined map by the argument of Lemma 4.6,
which applies here because every element of B is of the form a1+a2/c.
The map is completely bounded because the function 1

c
is a bounded

multiplier of C0(R). Clearly η is a B-bimodule map.
In addition, define a counit map

ε : E ⊗hB F −→ A
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by the formula
e⊗ f 7−→ c(ef)−.

This is certainly an A-bimodule map. It can be viewed as the compo-
sition

B ⊗hB B // B
δ // A

in which the first map is just the multiplication map on B, which is
completely bounded. As for δ, it is the restriction to B of the com-
pletely bounded map

T 7−→
[
0 1

]
T

[
1
0

]

from M2(C0(R)) to C0(R), and so it too is completely bounded.
The verification, now, that η and ε are the unit and counit of an

adjunction is exactly as in the proof of Theorem 4.8. �

Remark 4.17. If the function 1/c was unbounded (as it would
be if we were to use the natural, representation-theoretic c-function),
then our formula (4.16) for the unit map η would give an unbounded,
densely-defined B-bimodule map. Its domain, an ideal in B, would be
an operator algebra in its own right, and we could repeat the above
argument with this algebra in place of the original B.
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